Currently Empty: $0.00
6.Practice MCQs
Class 12 • Mathematics • NCERT
Practice MCQs – Probability
This MCQ set covers Probability as per NCERT Class 12 syllabus and CBSE board examination pattern.
Instructions:
• All questions are compulsory.
• Each question carries 1 mark.
• Choose the correct option.
• All questions are compulsory.
• Each question carries 1 mark.
• Choose the correct option.
- P(A | B) is defined when:
(A) P(A)=0
(B) P(B)=0
(C) P(B)≠0
(D) A and B are independent - P(A | B) equals:
(A) P(A)
(B) P(B)
(C) P(A ∩ B)/P(B)
(D) P(B)/P(A) - If events A and B are independent, then:
(A) P(A | B)=P(A)
(B) P(A ∩ B)=0
(C) P(A)=P(B)
(D) A and B are mutually exclusive - Two mutually exclusive events are:
(A) always independent
(B) never independent
(C) sometimes independent
(D) always dependent - If P(A)=0.3 and P(B)=0.5, then P(A ∩ B) for independent events is:
(A) 0.8
(B) 0.15
(C) 0.3
(D) 0.5 - P(A ∩ B) for independent events equals:
(A) P(A)+P(B)
(B) P(A)/P(B)
(C) P(A)P(B)
(D) P(A)−P(B) - Bayes’ theorem is used to find:
(A) P(A ∩ B)
(B) P(A)
(C) P(A | B)
(D) P(B) - Bayes’ theorem is based on:
(A) addition theorem
(B) multiplication theorem
(C) conditional probability
(D) permutations - Events A₁, A₂, …, Aₙ in Bayes’ theorem are:
(A) dependent
(B) mutually exclusive
(C) independent
(D) equally likely - Prior probabilities are:
(A) after experiment
(B) conditional probabilities
(C) before experiment
(D) posterior probabilities - Posterior probabilities are:
(A) before experiment
(B) after observing event
(C) mutually exclusive
(D) independent - If P(B)=0, then P(A | B) is:
(A) 0
(B) 1
(C) undefined
(D) equal to P(A) - A random variable is a function from:
(A) R → S
(B) S → R
(C) R → R
(D) S → S - Random variables are denoted by:
(A) small letters
(B) numbers
(C) capital letters
(D) symbols only - A discrete random variable has:
(A) infinite values
(B) interval values
(C) countable values
(D) continuous values - An example of discrete random variable is:
(A) height
(B) weight
(C) number of heads
(D) temperature - An example of continuous random variable is:
(A) number of students
(B) number of cars
(C) height of a person
(D) number of heads - Random variable may take:
(A) only positive values
(B) only integers
(C) negative values also
(D) only whole numbers - If X is a random variable, then X=x represents:
(A) an event
(B) an outcome
(C) a number
(D) sample space - Conditional probability reduces sample space to:
(A) S
(B) A
(C) B
(D) A ∩ B - If P(A|B)=P(A), then A and B are:
(A) mutually exclusive
(B) independent
(C) dependent
(D) exhaustive - Which is NOT required for Bayes’ theorem?
(A) Mutually exclusive events
(B) Exhaustive events
(C) P(B)≠0
(D) Independence of events - P(A ∩ B) ≤:
(A) P(A)
(B) P(B)
(C) both A and B
(D) P(A)+P(B) - The value of P(A | B) lies between:
(A) −1 and 1
(B) 0 and 1
(C) 1 and 2
(D) 0 and ∞ - The sample space is:
(A) event
(B) outcome
(C) set of all outcomes
(D) probability - P(A ∪ B) equals:
(A) P(A)+P(B)
(B) P(A)+P(B)−P(A∩B)
(C) P(A)P(B)
(D) P(A|B) - If P(A)=1, then A is:
(A) impossible
(B) sure event
(C) random event
(D) empty set - If P(A)=0, then A is:
(A) sure event
(B) random event
(C) impossible event
(D) sample space - The complement of event A is denoted by:
(A) A
(B) A̅
(C) A∩B
(D) A∪B - P(A̅) equals:
(A) 1−P(A)
(B) P(A)
(C) 1+P(A)
(D) 0 - The probability of sure event is:
(A) 0
(B) 1
(C) −1
(D) ∞ - The probability of impossible event is:
(A) 1
(B) −1
(C) 0
(D) ∞ - Bayes’ theorem helps in:
(A) forward probability
(B) backward probability
(C) independent events
(D) random variables - Which chapter follows random variables?
(A) Bayes’ theorem
(B) Probability distribution
(C) Permutations
(D) Statistics - Which is compulsory for conditional probability?
(A) P(A)=0
(B) P(B)=0
(C) P(B)≠0
(D) A and B independent - Independent events satisfy:
(A) P(A|B)=P(A)
(B) P(A|B)=0
(C) P(A|B)=1
(D) P(A|B)=P(B) - The sum of probabilities of all outcomes is:
(A) 0
(B) 1
(C) 2
(D) ∞ - Which is NOT a random variable?
(A) Number of heads
(B) Height
(C) Colour of car
(D) Weight - Probability is defined on:
(A) real numbers
(B) integers
(C) sample space
(D) events - Conditional probability depends on:
(A) event A only
(B) event B only
(C) occurrence of B
(D) sample space only - Bayes’ theorem uses:
(A) prior probabilities
(B) posterior probabilities
(C) both A and B
(D) none - The value of probability cannot be:
(A) 0
(B) 1
(C) −0.5
(D) 0.8 - Random variables are used to:
(A) count outcomes
(B) assign numbers to outcomes
(C) form sample space
(D) define events - Probability is a measure of:
(A) certainty
(B) randomness
(C) likelihood
(D) all of these - Which topic has highest weightage in Probability?
(A) Conditional probability
(B) Bayes’ theorem
(C) Random variables
(D) All of these
✅ Show Answer Key
1-C, 2-C, 3-A, 4-B, 5-B, 6-C, 7-C, 8-C, 9-B, 10-C,
11-B, 12-C, 13-B, 14-C, 15-C, 16-C, 17-C, 18-C, 19-A, 20-C,
21-B, 22-D, 23-C, 24-B, 25-C, 26-B, 27-B, 28-C, 29-B, 30-A,
31-B, 32-C, 33-B, 34-B, 35-B, 36-C, 37-A, 38-B, 39-C, 40-C,
41-C, 42-C, 43-C, 44-C, 45-C, 46-B, 47-D, 48-B, 49-C, 50-D
© Aviate Learning – Practice MCQs on Probability (NCERT Class 12)
