Currently Empty: $0.00
7.Practice MCQs
Class 12 • Mathematics • NCERT
Practice MCQs: Matrices & Determinants
This MCQ set covers all important NCERT concepts from Matrices and Determinants, strictly based on Class 12 syllabus.
Instructions:
• All questions are compulsory.
• Each question carries 1 mark.
• Choose the correct option.
• All questions are compulsory.
• Each question carries 1 mark.
• Choose the correct option.
- The order of a matrix having 3 rows and 2 columns is:
(A) 2 × 3 (B) 3 × 2 (C) 3 × 3 (D) 2 × 2 - A square matrix has:
(A) equal rows only
(B) equal columns only
(C) equal rows and columns
(D) unequal rows and columns - The identity matrix is a:
(A) zero matrix
(B) diagonal matrix
(C) scalar matrix
(D) both (B) and (C) - If A is a matrix of order 2 × 3 and B is of order 3 × 2, then AB is of order:
(A) 2 × 2 (B) 3 × 3 (C) 2 × 3 (D) 3 × 2 - The determinant of a 2 × 2 matrix
|a b|
|c d|
is:
(A) ad − bc (B) ab − cd (C) ac − bd (D) ad + bc - The determinant of an identity matrix is:
(A) 0 (B) 1 (C) −1 (D) Depends on order - If |A| = 0, then matrix A is:
(A) invertible
(B) singular
(C) identity
(D) scalar - The inverse of a matrix exists only if:
(A) A is diagonal
(B) A is square
(C) |A| ≠ 0
(D) both (B) and (C) - The determinant of a triangular matrix is equal to:
(A) sum of diagonal elements
(B) product of diagonal elements
(C) zero
(D) one - If A is a square matrix, then A · adj(A) equals:
(A) |A|I
(B) A²
(C) I
(D) 0 - The determinant of a matrix changes sign if:
(A) a row is multiplied by a constant
(B) two rows are interchanged
(C) a row is added to another row
(D) determinant is transposed - If two rows of a matrix are identical, then its determinant is:
(A) 1 (B) −1 (C) 0 (D) Undefined - The transpose of a matrix of order 3 × 4 is of order:
(A) 3 × 4 (B) 4 × 3 (C) 3 × 3 (D) 4 × 4 - (Aᵀ)ᵀ equals:
(A) A (B) −A (C) I (D) 0 - If A is symmetric, then:
(A) Aᵀ = −A
(B) Aᵀ = A
(C) A = I
(D) |A| = 0 - A skew-symmetric matrix satisfies:
(A) Aᵀ = A
(B) Aᵀ = −A
(C) Aᵀ = I
(D) A = 0 - The inverse of a matrix A is denoted by:
(A) A⁻¹ (B) adj A (C) Aᵀ (D) |A| - The determinant of a matrix and its transpose are:
(A) equal
(B) negatives
(C) reciprocals
(D) unrelated - If |A| = 5, then |2A| for a 2 × 2 matrix is:
(A) 10 (B) 20 (C) 5 (D) 40 - The matrix used to find inverse is:
(A) transpose
(B) identity
(C) adjoint
(D) zero - The inverse of identity matrix is:
(A) zero matrix
(B) identity matrix
(C) diagonal matrix
(D) scalar matrix - The determinant of a skew-symmetric matrix of odd order is:
(A) 1 (B) −1 (C) 0 (D) Undefined - If A and B are invertible, then (AB)⁻¹ equals:
(A) A⁻¹B⁻¹
(B) B⁻¹A⁻¹
(C) (A+B)⁻¹
(D) AB - Which matrix has all diagonal elements equal and others zero?
(A) Identity
(B) Scalar
(C) Zero
(D) Singular - The determinant of a zero matrix is:
(A) 1 (B) −1 (C) 0 (D) Undefined - The minor of an element is obtained by:
(A) deleting its row and column
(B) transposing matrix
(C) multiplying rows
(D) dividing columns - The cofactor of an element depends on:
(A) its position
(B) its value only
(C) matrix order only
(D) transpose - Which matrix has determinant always zero?
(A) Identity
(B) Singular
(C) Scalar
(D) Diagonal - If A is invertible, then |A⁻¹| equals:
(A) |A|
(B) 1/|A|
(C) −|A|
(D) 0 - The determinant of a 1 × 1 matrix [a] is:
(A) 0 (B) 1 (C) a (D) −a - The inverse of a matrix exists only for:
(A) rectangular matrices
(B) square matrices
(C) row matrices
(D) column matrices - The value of |A| if A has a zero row is:
(A) 1 (B) −1 (C) 0 (D) Undefined - Which operation does not change determinant?
(A) R₁ ↔ R₂
(B) R₁ → kR₁
(C) R₁ → R₁ + R₂
(D) None - The adjoint of adjoint of A equals:
(A) A
(B) |A|A
(C) |A|A⁻¹
(D) |A|ⁿ⁻²A - If |A| = 1, then A is:
(A) singular
(B) invertible
(C) zero
(D) symmetric - The determinant of a diagonal matrix is:
(A) sum of diagonals
(B) product of diagonals
(C) zero
(D) one - The inverse of a singular matrix is:
(A) zero
(B) identity
(C) not defined
(D) diagonal - Which chapter introduces inverse method of solving equations?
(A) Relations
(B) Determinants
(C) Matrices
(D) Integrals - For AX = B, solution exists uniquely if:
(A) A is identity
(B) |A| ≠ 0
(C) B = 0
(D) A is diagonal - The number of elements in a 3 × 3 matrix is:
(A) 3 (B) 6 (C) 9 (D) 12 - Transpose of a symmetric matrix is:
(A) zero
(B) identity
(C) same matrix
(D) undefined - Which is NOT a square matrix?
(A) 2 × 2 (B) 3 × 3 (C) 1 × 1 (D) 2 × 3 - The determinant is defined only for:
(A) row matrices
(B) column matrices
(C) square matrices
(D) diagonal matrices - The identity matrix is denoted by:
(A) A (B) I (C) O (D) E
✅ Show Answer Key
1-B, 2-C, 3-D, 4-A, 5-A, 6-B, 7-B, 8-D, 9-B, 10-A,
11-B, 12-C, 13-B, 14-A, 15-B, 16-B, 17-A, 18-A, 19-B, 20-C,
21-B, 22-C, 23-B, 24-B, 25-C, 26-A, 27-A, 28-B, 29-B, 30-C,
31-B, 32-C, 33-C, 34-D, 35-B, 36-B, 37-C, 38-B, 39-C, 40-C,
41-C, 42-C, 43-B, 44-B, 45-C, 46-C, 47-D, 48-C, 49-C, 50-B
© Aviate Learning – Class 12 NCERT MCQs (Matrices & Determinants)
