Currently Empty: $0.00
9.Calculus – MCQs & Tests
Class 12 • Mathematics • NCERT
Calculus – MCQs & Full Test (50 Questions)
This test covers the entire Calculus syllabus of NCERT Class 12 and follows the CBSE objective-question pattern.
Instructions:
• All questions are compulsory.
• Each question carries 1 mark.
• Choose the correct option.
• All questions are compulsory.
• Each question carries 1 mark.
• Choose the correct option.
-
- A function is continuous at x = a if:
(A) LHL = RHL only
(B) Limit exists only
(C) f(a) exists
(D) LHL = RHL = f(a)
- If a function is differentiable at x = a, then it is:
(A) discontinuous
(B) continuous
(C) undefined
(D) constant
- The function |x| is not differentiable at:
(A) x = 1
(B) x = −1
(C) x = 0
(D) x = 2
- d/dx (sin x) equals:
(A) −cos x
(B) cos x
(C) sin x
(D) −sin x
- d/dx (cos x) equals:
(A) sin x
(B) cos x
(C) −sin x
(D) −cos x
- The derivative of tan x is:
(A) sec x
(B) sec²x
(C) cosec²x
(D) tan²x
- If y = sin(3x), then dy/dx equals:
(A) cos(3x)
(B) 3 sin(3x)
(C) 3 cos(3x)
(D) −3 cos(3x)
- Implicit differentiation is used when:
(A) y is isolated
(B) y is constant
(C) y is not isolated
(D) function is continuous
- If f′(x) > 0, then f(x) is:
(A) decreasing
(B) constant
(C) increasing
(D) maximum
- A point where f′(x) = 0 is called:
(A) critical point
(B) inflection point
(C) stationary point
(D) turning point
- A function is continuous at x = a if:
-
- For maximum value, f′(x) changes from:
(A) − to +
(B) + to −
(C) 0 to +
(D) 0 to −
- For minimum value, f′(x) changes from:
(A) + to −
(B) − to +
(C) + to 0
(D) 0 to +
- Which test is compulsory in NCERT for maxima–minima?
(A) Second derivative test
(B) First derivative test
(C) Graph test
(D) Value test
- For maximum value, f′(x) changes from:
-
- ∫ x² dx equals:
(A) x³
(B) x³/3 + C
(C) 2x
(D) x² + C
- ∫ cos x dx equals:
(A) sin x + C
(B) −sin x + C
(C) cos x + C
(D) −cos x + C
- The constant C appears because:
(A) integral is unique
(B) derivative of constant is zero
(C) integral is zero
(D) derivative is constant
- ∫ 1/x dx equals:
(A) x
(B) 1/x
(C) ln|x| + C
(D) eˣ
- ∫ 0 dx equals:
(A) 0
(B) 1
(C) C
(D) x
- ∫ x² dx equals:
-
- ∫aa f(x) dx equals:
(A) 1
(B) −1
(C) 0
(D) f(a)
- ∫ab f(x) dx equals:
(A) F(a) − F(b)
(B) F(b) − F(a)
(C) F(a) + F(b)
(D) 0
- If f(x) is odd, then ∫−aa f(x) dx equals:
(A) a
(B) −a
(C) 0
(D) 1
- Constant of integration is used in:
(A) definite integral
(B) indefinite integral
(C) both
(D) none
- ∫aa f(x) dx equals:
-
- Area under curve y = f(x) is given by:
(A) f(x)
(B) d/dx f(x)
(C) ∫ f(x) dx
(D) f′(x)
- If curve lies below x-axis, area is:
(A) negative
(B) zero
(C) positive
(D) undefined
- Area between two curves is:
(A) ∫ (lower − upper) dx
(B) ∫ (upper − lower) dx
(C) ∫ upper dx
(D) ∫ lower dx
- Area under curve y = f(x) is given by:
-
- A differential equation involves:
(A) integrals
(B) limits
(C) derivatives
(D) constants only
- The order of dy/dx = x² is:
(A) 1
(B) 2
(C) 0
(D) undefined
- The degree of (dy/dx)³ = y is:
(A) 1
(B) 2
(C) 3
(D) not defined
- The solution of dy/dx = 2x is:
(A) x²
(B) 2x²
(C) x² + C
(D) 2x + C
- General solution contains:
(A) no constants
(B) fixed constants
(C) arbitrary constants
(D) variables only
- A differential equation involves:
- If f′(x) = 0 for all x, then f(x) is:
(A) linear
(B) quadratic
(C) constant
(D) exponential
- The derivative of eˣ is:
(A) eˣ
(B) xeˣ
(C) ln x
(D) 1
- ∫ eˣ dx equals:
(A) xeˣ
(B) eˣ + C
(C) ln x
(D) 1
- ∫ sin x dx equals:
(A) cos x
(B) −cos x + C
(C) sin x + C
(D) −sin x
- Which chapter has maximum board weightage?
(A) Limits
(B) Continuity
(C) Integrals
(D) Differential equations
✅ Show Answer Key
1-D, 2-B, 3-C, 4-B, 5-C, 6-B, 7-C, 8-C, 9-C, 10-C,
11-B, 12-B, 13-B, 14-B, 15-A, 16-B, 17-C, 18-C, 19-C, 20-B,
21-C, 22-C, 23-B, 24-C, 25-C, 26-B, 27-C, 28-C, 29-A, 30-C,
31-C, 32-C, 33-C, 34-A, 35-A, 36-B, 37-B, 38-A, 39-B, 40-C,
41-C, 42-A, 43-B, 44-B, 45-C, 46-A, 47-B, 48-B, 49-B, 50-C
© Aviate Learning – Class 12 Calculus MCQs (NCERT)
